Beyond Pattern Recognition Face Recognition Systems - Similarity Scoring

13 octobre 2022

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

So far, we have seen :

- how to formulate the Pattern Recognition problem by means of notions of Probability/Statistics,
- many use cases (e.g. medical diagnosis tools, computer vision, audio analysis),
- many popular algorithms (e.g. ensemble learning, deep learning, SVM) and that notions of Optimization are required to undestand them
- that these problems are more difficult to solve in practice than to state (cf model selection/assessment)

Pattern Recognition is the flagship problem in AI (ML) :

- it is well understood from a **theoretical perspective** (cf Vapnik-Chervonenkis theory)
- the task is ubiquitous
- many reliable softwares can be used
- many other tasks are performed by machines using variants of it (e.g. biometrics, recommending systems).

ション ふゆ アメリア メリア しょうくしゃ

Today (and during next lab), this will be illustrated by **Face Recognition**

• **Motivation** : many applications of Face Recognition, e.g. access control, identity verification (smartphones), social media ...

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うへつ

- Threats : bias with respect to race, gender, age
- Different causes of bias, a very hot topic in Al now

Table of Contents

- 1 Preliminaries on ROC Analysis
- Practices in Modern Face Recognition
 - Training
 - Testing
- Bias in Face Recognition
 - Different accuracy across groups
 - Set a reference threshold
 - Other bias metrics in the literature

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- 4 Ethical module learning
 - Framework
 - von Mises-Fisher loss
 - Training in low dimensions
 - B Results
 - Observing gender bias
 - Reducing gender bias

- Same data as in binary classification
- Posterior probability $\eta(x) = \{Y = 1 \mid X = x\}$
- ullet Ordering on \mathbb{R}^d defined through scoring $s:\mathbb{R}^d\to\mathbb{R}$
- Goal : build an program s(x) so as rank the elements of \mathbb{R}^d as η : $x \preceq x'$ iff $s(x) \le s(x')$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Scoring and ROC curves

• True Positive rate :

$$\operatorname{tpr}_{s}(t) = (s(X) \ge t \mid Y = 1)$$

• False Positive Rate :

$$\operatorname{fpr}_{s}(t) = (s(X) \ge t \mid Y = -1)$$

<ロト <四ト <注入 <注下 <注下 <

Receiving Operator Characteristic : $t \mapsto (\operatorname{fpr}_{s}(t), \operatorname{tpr}_{s}(t))$

Scoring and ROC curves

• True Positive rate :

$$\operatorname{tpr}_{s}(t) = (s(X) \ge t \mid Y = 1)$$

• False Positive Rate :

$$\operatorname{fpr}_{s}(t) = (s(X) \ge t \mid Y = -1)$$

Receiving Operator Characteristic : $t \mapsto (\operatorname{fpr}_s(t), \operatorname{tpr}_s(t))$ AUC = Area Under the ROC Curve The data can be modeled by i.i.d. realizations of a random variable $(X, Y) \in \mathbb{R}^{h \times w \times c} \times \{1, \dots, K\}$ with law \mathbb{P} . Dataset : $(\mathbf{x}_i, y_i)_{1 \le i \le N}$.

Goal : learn an encoder function $f_{\theta} : \mathbb{R}^{h \times w \times c} \to \mathbb{R}^{d}$ that embeds the images in a way to bring same identities closer together.

$$Z := f_{\theta}(X)$$
 is the face embedding of X.

The closeness between two embeddings is usually quantified with the cosine similarity measure $s(z_i, z_j) := z_i^T z_j / (||z_i|| \cdot ||z_j||)$.

An operating point $t \in [-1, 1]$ (threshold of acceptance) has to be chosen to classify a pair (z_i, z_j) as :

- genuine (same identity) if $s(z_i, z_j) \ge t$
- *impostor* (distinct identities) if $s(z_i, z_j) < t$.

Evaluation metrics. Let (X_1, y_1) and (X_2, y_2) be two i.i.d. random variables with law \mathbb{P} . We distinguish between the False Acceptance and False Rejection Rates, respectively defined by :

$$FAR(t) := \mathbb{P}(s(Z_1, Z_2) \ge t \mid y_1 \neq y_2)$$

$$FRR(t) := \mathbb{P}(s(Z_1, Z_2) < t \mid y_1 = y_2)$$

イロト 不得 とうき イヨト

3

Canonical metric : For $\alpha \in [0, 1]$,

 $FRR@(FAR = \alpha) := FRR(t)$

with *t* s.t. $FAR(t) = \alpha$.

 \rightarrow ROC/DET curve.

→ In biometrics, we are interested in FRR@(FAR = α) for $\alpha = 10^{-i}$ with $i \in \{1, ..., 6\}$.

Fairness. Discrete sensitive attribute that can take A > 1 different values.

 \rightarrow random variables (X_i, y_i, a_i) where $a_i \in \mathcal{A} = \{0, 1, \dots, A-1\}$. For $a \in \mathcal{A}$:

$$\begin{aligned} & \text{FAR}_{a}(t) := \mathbb{P}(s(Z_{1}, Z_{2}) \geq t \mid y_{1} \neq y_{2}, \ a_{1} = a_{2} = a) \\ & \text{FRR}_{a}(t) := \mathbb{P}(s(Z_{1}, Z_{2}) < t \mid y_{1} = y_{2}, \ a_{1} = a_{2} = a). \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Preliminaries on ROC Analysis

Practices in Modern Face Recognition Bias in Face Recognition Ethical module learning Results

Intra-group ROC curves.

• Face verification :

æ

• Face identification :

Figure – Workflow of Deep Face Recognition training (crystal_loss).

i-th image
$$\xrightarrow{DCNN} \mathbf{f}_i \in \mathbb{R}^d \xrightarrow{MLP} \mathbf{W}\mathbf{f}_i + \mathbf{b} = \begin{bmatrix} \mathbf{w}_1^{\mathsf{T}}\mathbf{f}_i + b_1 \\ \mathbf{w}_2^{\mathsf{T}}\mathbf{f}_i + b_2 \\ \vdots \\ \mathbf{w}_C^{\mathsf{T}}\mathbf{f}_i + b_C \end{bmatrix} \xrightarrow{softmax} \mathbf{p}_i \in \mathbb{R}^C$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

i-th image
$$\xrightarrow{DCNN} \mathbf{f}_i \in \mathbb{R}^d \xrightarrow{MLP} \mathbf{W}\mathbf{f}_i + \mathbf{b} = \begin{bmatrix} \mathbf{w}_1^{\mathsf{T}}\mathbf{f}_i + b_1 \\ \mathbf{w}_2^{\mathsf{T}}\mathbf{f}_i + b_2 \\ \vdots \\ \mathbf{w}_C^{\mathsf{T}}\mathbf{f}_i + b_C \end{bmatrix} \xrightarrow{softmax} \mathbf{p}_i \in \mathbb{R}^C$$

・ロト ・聞 ト ・ ヨト ・ ヨト

€ 990

$$\mathcal{L}_{\text{softmax}} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{\boldsymbol{w}_{\boldsymbol{y}_i}^{\top} \boldsymbol{f}_i + b_{\boldsymbol{y}_i}}}{\sum\limits_{k=1}^{C} e^{\boldsymbol{w}_k^{\top} \boldsymbol{f}_i + b_k}}$$

Loss functions

•
$$\mathcal{L}_{softmax} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{\mathbf{w}_{\mathbf{y}_{i}}^{\mathsf{T}}} \mathbf{f}_{i} + b_{\mathbf{y}_{i}}}{\sum_{k=1}^{C} e^{\mathbf{w}_{\mathbf{k}}^{\mathsf{T}}} \mathbf{f}_{i} + b_{k}}$$

• $\mathcal{L}_{modified} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{\kappa} \frac{\mathbf{w}_{\mathbf{y}_{i}}^{\mathsf{T}}}{\|\mathbf{w}_{\mathbf{y}_{i}}\|_{2}} \frac{\mathbf{f}_{i}}{\|\mathbf{f}_{i}\|_{2}}}{\sum_{k=1}^{C} e^{\kappa} \frac{\mathbf{w}_{\mathbf{k}}^{\mathsf{T}}}{\|\mathbf{w}_{\mathbf{k}}\|_{2}} \frac{\mathbf{f}_{i}}{\|\mathbf{f}_{i}\|_{2}}} \qquad (normface)$
 $= -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{\kappa} \mu_{\mathbf{y}_{i}}^{\mathsf{T}} \mathbf{x}_{i}}{\sum_{k=1}^{C} e^{\kappa} \mu_{\mathbf{k}}^{\mathsf{T}} \mathbf{x}_{i}} \qquad \|\mathbf{x}_{i}\|_{2} = \|\mu_{\mathbf{k}}\|_{2} = 1$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• Large-margin loss functions

Figure – Workflow of a traditional classifier of faces (vmf).

$$\mathcal{L}_{\text{modified}} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{\kappa} \mu_{\mathbf{y}_i} \mathbf{x}_i}{\sum\limits_{k=1}^{C} e^{\kappa} \mu_k \mathbf{x}_i} \quad \|\mathbf{x}_i\|_2 = \|\mu_k\|_2 = 1$$

| ↓ □ ▶ ↓ @ ▶ ↓ @ ▶ ↓ @ ● のへ()

Figure – Workflow of Deep Face Recognition (crystal loss).

Similarity score : $s(\mathbf{f}_i, \mathbf{f}_j) = \frac{\mathbf{f}_i^{\mathsf{T}} \mathbf{f}_j}{\|\mathbf{f}_i\|_2 \|\mathbf{f}_j\|_2} = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j = \cos(\theta_{i,j})$

Evaluation step

- Testing set of *n* face images \rightarrow score matrix $\mathcal{S} = \left(s(\textbf{\textit{f}}_{\textbf{i}}, \textbf{\textit{f}}_{\textbf{j}})
 ight)_{1 < i,j < n}$
- 2 types of scores : $\mathcal{G} = \{S_{i,j} \mid y_i = y_j, i \neq j\}$ (genuines) $\mathcal{I} = \{S_{i,j} \mid y_i \neq y_j\}$ (impostors)

Evaluation metrics

- False Acceptance Rate : FAR(t) = proportion of impostors matched
- False Rejection Rate : FRR(t) = proportion of genuines non-matched

Figure – Typical matching score distribution (matching).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Evaluation metrics

- False Acceptance Rate : FAR(t) = proportion of impostors matched
- False Rejection Rate : FRR(t) = proportion of genuines non-matched

▲ロト ▲圖ト ▲ヨト ▲ヨト - ヨ - のへで

- FRR@FAR= α : FRR(t_{α}) with t_{α} s.t. FAR(t_{α}) = α
- DET curve : FRR@FAR= α for $\alpha \in [0, 1]$

DET/ROC curve

Figure – Two typical DET curves (det □ example): < => = ∽ < ?

Bias in Face Recognition

- Testing phase of Face Recognition is a binary classification with 2 input images ($\hat{Y} = 0 \rightarrow$ no match, $\hat{Y} = 1 \rightarrow$ match)
- Demographic parity : $\mathbb{P}(\hat{Y}|A = a) = \mathbb{P}(\hat{Y}|A = a')$
- Equal Opportunity : $\mathbb{P}(\hat{Y} = 1 | Y = 1, A = a) = \mathbb{P}(\hat{Y} = 1 | Y = 1, A = a')$ \rightarrow Equality of TPR (or equivalently FNR)
- Equalized Odds :
 - $\mathbb{P}(\hat{Y}=1|Y=y, A=a)=\mathbb{P}(\hat{Y}=1|Y=y, A=a')$
 - \rightarrow Equality of TPR (or equivalently FNR) and FPR (or equivalently TNR)

Different accuracy across groups

- Compute metrics of performance for each group g
 - \rightarrow Consider the group g in the testing set, get the matching scores

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 $\rightarrow \mathsf{FAR}_g(t), \mathsf{FRR}_g(t)$

Different accuracy across groups

• Compute metrics of performance for each group $g \rightarrow$ Consider the group g in the testing set, get the matching scores $\rightarrow \text{FAR}_g(t), \text{FRR}_g(t)$

▲ロト ▲圖ト ▲ヨト ▲ヨト - ヨ - のへで

• $\mathsf{FRR}_g @\mathsf{FAR}_g = \alpha \to \mathsf{DET}$ curve for each groupe g

Different accuracy across groups

Figure – ROC curves with male/female breakdown (vggface2).

・ロト ・ 四ト ・ 日ト ・ 日下 ・ 日

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Reference group

- Use a group as reference *ref*
 - \rightarrow FAR_g@FAR_{ref}= α
 - $\rightarrow \mathsf{FRR}_g @\mathsf{FAR}_{ref} = \alpha$

 \rightarrow FRR_g@FRR_{ref}= α

Reference group

Global population as reference

- Use a group as reference *ref* :
 - \rightarrow FAR_g@FAR_{ref}= α
 - $\rightarrow \mathsf{FRR}_g @\mathsf{FAR}_{ref} = \alpha$
- Use the global population as reference :

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

- \rightarrow FAR_g@FAR= α
- \rightarrow FRR_g@FAR= α

Global population as reference

- Use a group as reference *ref* :
 - $\rightarrow \mathsf{FAR}_g @\mathsf{FAR}_{ref} = \alpha$
 - $\rightarrow \mathsf{FRR}_g @\mathsf{FAR}_{ref} = \alpha$
- Use the global population as reference :
 - \rightarrow FAR_g@FAR= α
 - $\rightarrow \mathsf{FRR}_g @\mathsf{FAR} = \alpha$
- Metrics of bias :

 $\rightarrow |\Delta FAR_g @FAR = \alpha| = |FAR_F @FAR = \alpha - FAR_M @FAR = \alpha|$ $\rightarrow |\Delta FRR_g @FAR = \alpha| = |FRR_F @FAR = \alpha - FRR_M @FAR = \alpha|$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Global population as reference

- Use a group as reference *ref* :
 - \rightarrow FAR_g@FAR_{ref}= α
 - $\rightarrow \mathsf{FRR}_g @\mathsf{FAR}_{ref} = \alpha$
- Use the global population as reference :
 - $\rightarrow \mathsf{FAR}_g @\mathsf{FAR} = \alpha$
 - $\rightarrow \mathsf{FRR}_g @\mathsf{FAR} = \alpha$
- Metrics of bias :

$$\rightarrow \frac{\mathsf{FAR}_{\mathsf{F}} @\mathsf{FAR} = \alpha}{\mathsf{FAR}_{\mathsf{M}} @\mathsf{FAR} = \alpha} := \frac{\mathsf{FAR}_{\mathsf{F}}}{\mathsf{FAR}_{\mathsf{M}}} @\mathsf{FAR} = \alpha$$

$$\rightarrow \frac{\mathsf{FRR}_{\mathsf{F}} @\mathsf{FAR} = \alpha}{\mathsf{FRR}_{\mathsf{M}} @\mathsf{FAR} = \alpha} := \frac{\mathsf{FRR}_{\mathsf{F}}}{\mathsf{FRR}_{\mathsf{M}}} @\mathsf{FAR} = \alpha$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Other bias metrics

- Difference in accuracy
- $|\Delta TAR_g @FAR = \alpha| = |TAR_F @FAR = \alpha TAR_M @FAR = \alpha|$ (agenda_gan_gender)
- $MAD(TAR) = \mathbb{E}[TAR_g@FAR = \alpha \mathbb{E}[TAR_g@FAR = \alpha]]$ (comparison_level_race_bias)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

•
$$\frac{\max_{g} FAR_{g}(t)}{\min_{g} FAR_{g}(t)}$$

•
$$\frac{\max_{g} FRR_{g}(t)}{\min_{g} FRR_{g}(t)} \text{ (nist_prez_demograpics)}$$

 \rightarrow 'Fairness - utility' tradeoff

Framework

Figure – Proposed approach to reduce gender bias (F.E. = Face Embedding).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへ⊙

Training set of pre-trained model

2M images, 90k labelled identities

Gender statistics :

- Number of images : 60% F, 40% M
- $\bullet\,$ Number of identities : 35% F, 65% M

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Genders are determined with a classifier.

Ethical module

Input : feature vectors of dimension 256

Figure – Toy model MLP : 256 units, 256 units, ReLU activation, d units.

Output : feature vectors $f\in \mathbb{R}^d o$ classified with yon Mises-Fisher loss of the second second

von Mises-Fisher distribution

Density function : $\mathbf{x_i} \in \mathbb{R}^d$, $\|\mathbf{x_i}\|_2 = 1$

$$V_d(\mathbf{x}_i|\boldsymbol{\mu},\boldsymbol{\kappa}) = C_d(\boldsymbol{\kappa}) \ e^{\boldsymbol{\kappa}} \ \boldsymbol{\mu}^{\mathsf{T}} \mathbf{x}_i \qquad \boldsymbol{\mu} \in \mathbb{R}^d, \|\boldsymbol{\mu}\|_2 = 1$$
$$= C_d(\boldsymbol{\kappa}) \ e^{\boldsymbol{\kappa}} \cos(\theta) \qquad C_d(\boldsymbol{\kappa}) = \frac{\boldsymbol{\kappa}^{\frac{d}{2}-1}}{(2\pi)^{\frac{d}{2}} I_{\frac{d}{2}-1}(\boldsymbol{\kappa})}$$

Figure – Samples from vMF distribution, d = 3 (**vmf**).

Likelihood of von Mises-Fisher distribution

vMF mixture model

Mixture model with C classes : $\mathbf{x}_i, \mu_j \in \mathbb{R}^d$, $\|\mathbf{x}_i\|_2 = \|\mu_j\|_2 = 1$

$$g_d(\mathbf{x}_i|\Theta_C) = \sum_{j=1}^C \pi_j \ V_d(\mathbf{x}_i|\boldsymbol{\mu}_j, \boldsymbol{\kappa}_j) \qquad \Theta_C = \{(\pi_j, \boldsymbol{\mu}_j, \boldsymbol{\kappa}_j)\}_{1 \le j \le C}$$

Figure – Samples from vMF mixture model, d = 3, C = 3 (**vmf**).

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うへつ

Set a statistical model on face embeddings

• Mixture model with C classes : $\mathbf{x_i}, \mu_j \in \mathbb{R}^d$, $\|\mathbf{x_i}\|_2 = \|\mu_j\|_2 = 1$

$$g_d(\mathbf{x}_i|\Theta_C) = \sum_{j=1}^C \pi_j \ V_d(\mathbf{x}_i|\boldsymbol{\mu}_j,\boldsymbol{\kappa}_j) \qquad \Theta_C = \{(\pi_j,\boldsymbol{\mu}_j,\boldsymbol{\kappa}_j)\}_{1 \le j \le C}$$

• Posterior probability $p_{i,j}$ that x_i belongs to identity j:

$$p_{i,j} = \frac{V_d(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\kappa}_j)}{\sum_{k=1}^{C} V_d(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\kappa}_k)} = \frac{C_d(\boldsymbol{\kappa}_j) \ e^{\boldsymbol{\kappa}_j} \ \boldsymbol{\mu}_j^{\mathsf{T}} \mathbf{x}_i}{\sum_{k=1}^{C} C_d(\boldsymbol{\kappa}_k) \ e^{\boldsymbol{\kappa}_k} \ \boldsymbol{\mu}_k^{\mathsf{T}} \mathbf{x}_i}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Set a statistical model on face embeddings

• Mixture model with C classes : $\mathbf{x_i}, \mu_j \in \mathbb{R}^d$, $\|\mathbf{x_i}\|_2 = \|\mu_j\|_2 = 1$

$$g_d(\mathbf{x}_i|\Theta_C) = \sum_{j=1}^C \pi_j \ V_d(\mathbf{x}_i|\boldsymbol{\mu}_j,\boldsymbol{\kappa}_j) \qquad \Theta_C = \{(\pi_j,\boldsymbol{\mu}_j,\boldsymbol{\kappa}_j)\}_{1 \le j \le C}$$

• Posterior probability $p_{i,j}$ that x_i belongs to identity j:

$$p_{i,j} = \frac{V_d(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\kappa}_j)}{\sum_{k=1}^{C} V_d(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\kappa}_k)} = \frac{C_d(\boldsymbol{\kappa}_j) \ e^{\boldsymbol{\kappa}_j} \ \boldsymbol{\mu}_j^{\mathsf{T}} \mathbf{x}_i}{\sum_{k=1}^{C} C_d(\boldsymbol{\kappa}_k) \ e^{\boldsymbol{\kappa}_k} \ \boldsymbol{\mu}_k^{\mathsf{T}} \mathbf{x}_i}$$

• vMF mixture loss (cross-entropy) :

$$\mathcal{L}_{v\mathsf{MF}}(\{\kappa_{j},\mu_{j}\}_{j}) = -\frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{C_{d}(\kappa_{y_{i}}) e^{\kappa_{y_{i}}} \mu_{y_{i}}^{\mathsf{T}} \mathbf{x}_{i}}{\sum_{k=1}^{C} C_{d}(\kappa_{k}) e^{\kappa_{k}} \mu_{k}^{\mathsf{T}} \mathbf{x}_{i}} \right] = -\infty$$

Set a statistical model on face embeddings

• vMF mixture loss (cross-entropy) :

$$\mathcal{L}_{\mathsf{vMF}}(\{\kappa_j, \mu_j\}_j) = -\frac{1}{N} \sum_{i=1}^N \log \left[\frac{C_d(\kappa_{y_i}) \ e^{\kappa_{y_i}} \ \mu_{y_i}^{\mathsf{T}} \mathbf{x}_i}{\sum_{k=1}^C C_d(\kappa_k) \ e^{\kappa_k} \ \mu_k^{\mathsf{T}} \mathbf{x}_i} \right] \\ \to \kappa_j \text{ are hyperparameters}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \rightarrow Use $\kappa_{\rm F}, \kappa_{\rm M}$

Set a statistical model on face embeddings

• vMF mixture loss (cross-entropy) :

$$\mathcal{L}_{\mathsf{vMF}}(\{\kappa_j, \mu_j\}_j) = -\frac{1}{N} \sum_{i=1}^N \log \left[\frac{C_d(\kappa_{y_i}) \ e^{\kappa_{y_i}} \ \mu_{y_i}^{\mathsf{T}} \mathbf{x}_i}{\sum_{k=1}^C C_d(\kappa_k) \ e^{\kappa_k} \ \mu_k^{\mathsf{T}} \mathbf{x}_i} \right] \\ \to \kappa_j \text{ are hyperparameters}$$

 \rightarrow Use $\kappa_{\mathsf{F}}, \kappa_{\mathsf{M}}$

• Generalization of the modified softmax loss :

$$\mathcal{L}_{\text{modified}} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{\kappa} \mu_{\mathbf{y}_i}^{\mathsf{T}} \mathbf{x}_i}{\sum_{k=1}^{C} e^{\kappa} \mu_k^{\mathsf{T}} \mathbf{x}_i}$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Visualization after training

Training data : N = 400 images, C = 20 IDs, 50% F, 50% M

All parameters from toy model MLP + $(\{\mu_j\})_{1 \le j \le C}$ learned

 $\kappa_j = \kappa$ fixed for $j = 1 \dots C$, d = 3

Figure – Visualization of hypersphere after a few training epochs.

Visualization after training

Training data : N = 400 images, C = 20 identities, 50% F, 50% M

Figure – Visualization of hypersphere after a few training epochs.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

SAC

Visualization after training

Training data : N = 400 images, C = 20 identities, 50% F, 50% M

Figure – Hypersphere and covered surface by each gender after a few training epochs.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Data

Datasets	Images	Identities	Images/identity	Gender prop.			
Training sets	120k	20k	6	γ			
Validation sets	20k	20k	1	γ			
Testing set	7k	1k	7	$\gamma_{test} = 0.5$			

Table – Datasets used to train, monitor and test our proposed ethical module. For a given dataset, each identity has exactly the same number of face images.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

All parameters from ethical module + $({\mu_j})_{1 \le j \le C}$ learned

d = 256

Performance of trained model

 $\gamma=$ 0.5, $\kappa=$ 10, 100 epochs

Figure – DET curve of a model trained on gender_balanced training set

Performance baseline

Baseline = without 'ethical training'

Figure – DET curve of a model trained on gender-balanced training set

Gender bias from dataset

$\kappa = 10$, 100 epochs

Figure – FRR_g@FAR_g=10⁻³ as function of γ_{s} w.r.t. test data.

2 concentration parameters

- Gender of k-th identity : $g_k \in \{F, M\}$
- vMF loss for gender bias reduction :

$$\mathcal{L}_{v\mathsf{MF}_gender}(\Theta_{C}) = -\frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{C_{d}(\kappa_{g_{y_{i}}}) e^{\kappa_{g_{y_{i}}}} \mu_{y_{i}} \mathbf{x}_{i}}{\sum_{k=1}^{C} C_{d}(\kappa_{g_{k}}) e^{\kappa_{g_{k}}} \mu_{k} \mathbf{x}_{i}} \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\rightarrow \kappa_F, \kappa_M$

• Biased dataset : $\gamma = 0.2$

Preliminaries on ROC Analysis Bias in Face Recognition Ethical module learning Results

ł

500

Ratio $\frac{FRR_F}{FRR_M}$ @FAR_{total} = 10⁻³ at 60 epochs

æ

▶ ≣ •**০**৭

Conclusion

- Gender bias reduction, in terms of both FAR and FRR, for any pre-trained model
- To reach performance baseline, train with more data (nb of images fixed / ID ?)
- Link between gender bias and proportion of covered surface by each gender on hypersphere?

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うへつ

• Can be adapted for more than 2 groups.

																			5
						Ratio	$\frac{FAR_{i}}{FAR_{i}}$	@FA	R _{total}	= 10	-3 at !	50 ep	ochs						
	60 -	0.51	1.52	2.21	2.26	1.85	1.47	1.64	1.53	1.32	1.11	1.26	1.12	0.99	0.95	0.88	0.97		
KF	55 -	0.44	1.39	2.10	2.23	1.10	1.69	1.38	1.16	1.26	1.15	1.09	1.08	1.01	0.88	0.95	1.11		•
	50 -	0.38	1.26	1.91	1.89	1.89	1.13	1.76	1.72	1.56	1.05	1.04	1.19	0.83	0.91	0.84	0.90		
	45 -	0.36	1.08	1.69	1.76	1.53	1.29	1.16	1.12	0.99	1.08	1.18	1.03	0.88	0.91	0.71	0.70		
	40 -	0.27	1.00	1.44	1.42	2.04	1.78	1.41	1.42	1.04	0.91	0.89	0.73	0.90	0.72	0.65	0.81		- :
	35 -	0.20	0.86	1.18	1.15	1.42	1.19	1.38	1.02	1.03	0.81	0.73	0.84	0.73	0.67	0.72	0.62		
	30 -	0.18	0.72	0.95	0.95	1.11	1.27	1.19	1.17	1.05	0.95	1.01	1.04	0.81	0.73	0.79	1.07		
	25 -	0.16	0.61	0.82	0.99	1.45	1.45	1.23	1.10	0.97	0.90	0.81	0.84	0.89	0.75	0.87	0.73		- :
	20 -	0.14	0.56	0.89	1.57	1.90	1.56	1.36	1.18	1.03	0.97	0.92	0.90	0.89	0.86	0.85	0.91		
	15 -	0.19	0.81	1.73	2.42	2.10	1.92	1.60	1.43	1.36	1.23	1.11	1.09	1.07	1.06	1.04	1.05		
	10 -	0.51	1.95	4.22	5.18	3.65	3.23	2.62	2.42	2.15	1.95	1.72	1.73	1.59	1.50	1.40	1.41		
	5 -	3.98	19.81	42.08	57.98	44.24	31.41	23.11	18.82	13.03	10.72	8.52	6.28	5.57	5.59	4.85	4.55		
		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80		

■ わへゆ

≣ જ) ૧.ઉ

Preliminaries on ROC Analysis Bias in Face Recognition Ethical module learning Results

0.9

0.6

0.5